An Introduction to the Finite Element Method for Differential Equations

An Introduction to the Finite Element Method for Differential Equations
Title An Introduction to the Finite Element Method for Differential Equations PDF eBook
Author Mohammad Asadzadeh
Publisher Wiley
Pages 0
Release 2020-09-23
Genre Mathematics
ISBN 9781119671640

Download An Introduction to the Finite Element Method for Differential Equations Book in PDF, Epub and Kindle

Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method
Title Numerical Solution of Partial Differential Equations by the Finite Element Method PDF eBook
Author Claes Johnson
Publisher Courier Corporation
Pages 290
Release 2012-05-23
Genre Mathematics
ISBN 0486131599

Download Numerical Solution of Partial Differential Equations by the Finite Element Method Book in PDF, Epub and Kindle

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations
Title Numerical Solution of Differential Equations PDF eBook
Author Zhilin Li
Publisher Cambridge University Press
Pages 305
Release 2017-11-30
Genre Mathematics
ISBN 1107163226

Download Numerical Solution of Differential Equations Book in PDF, Epub and Kindle

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements
Title An Introduction to the Mathematical Theory of Finite Elements PDF eBook
Author J. T. Oden
Publisher Courier Corporation
Pages 450
Release 2012-05-23
Genre Technology & Engineering
ISBN 0486142213

Download An Introduction to the Mathematical Theory of Finite Elements Book in PDF, Epub and Kindle

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

An Introduction to the Finite Element Method

An Introduction to the Finite Element Method
Title An Introduction to the Finite Element Method PDF eBook
Author Junuthula Narasimha Reddy
Publisher
Pages 766
Release 2006
Genre Finite element method
ISBN 9780071244732

Download An Introduction to the Finite Element Method Book in PDF, Epub and Kindle

The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world

The Finite Element Method

The Finite Element Method
Title The Finite Element Method PDF eBook
Author A. J. Davies
Publisher Oxford University Press
Pages 308
Release 2011-09-08
Genre Mathematics
ISBN 0199609136

Download The Finite Element Method Book in PDF, Epub and Kindle

An introduction to the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. Contains worked examples throughout and each chapter has a set of exercises with detailed solutions.

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method
Title Partial Differential Equations and the Finite Element Method PDF eBook
Author Pavel Ŝolín
Publisher John Wiley & Sons
Pages 505
Release 2005-12-16
Genre Mathematics
ISBN 0471764094

Download Partial Differential Equations and the Finite Element Method Book in PDF, Epub and Kindle

A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.