Projective Geometry and Its Applications to Computer Graphics
Title | Projective Geometry and Its Applications to Computer Graphics PDF eBook |
Author | Michael A. Penna |
Publisher | Prentice Hall |
Pages | 426 |
Release | 1986 |
Genre | Computers |
ISBN |
The Four Pillars of Geometry
Title | The Four Pillars of Geometry PDF eBook |
Author | John Stillwell |
Publisher | Springer Science & Business Media |
Pages | 240 |
Release | 2005-08-09 |
Genre | Mathematics |
ISBN | 0387255303 |
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Perspectives on Projective Geometry
Title | Perspectives on Projective Geometry PDF eBook |
Author | Jürgen Richter-Gebert |
Publisher | Springer Science & Business Media |
Pages | 573 |
Release | 2011-02-04 |
Genre | Mathematics |
ISBN | 3642172865 |
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
An Introduction to Projective Geometry and Its Applications
Title | An Introduction to Projective Geometry and Its Applications PDF eBook |
Author | Arnold Emch |
Publisher | |
Pages | 316 |
Release | 1905 |
Genre | Geometry, Analytic |
ISBN |
Projective Geometry
Title | Projective Geometry PDF eBook |
Author | Albrecht Beutelspacher |
Publisher | Cambridge University Press |
Pages | 272 |
Release | 1998-01-29 |
Genre | Mathematics |
ISBN | 9780521483643 |
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Projective and Cayley-Klein Geometries
Title | Projective and Cayley-Klein Geometries PDF eBook |
Author | Arkadij L. Onishchik |
Publisher | Springer Science & Business Media |
Pages | 445 |
Release | 2006-11-22 |
Genre | Mathematics |
ISBN | 3540356452 |
This book offers an introduction into projective geometry. The first part presents n-dimensional projective geometry over an arbitrary skew field; the real, the complex, and the quaternionic geometries are the central topics, finite geometries playing only a minor part. The second deals with classical linear and projective groups and the associated geometries. The final section summarizes selected results and problems from the geometry of transformation groups.
On the Geometry of Some Special Projective Varieties
Title | On the Geometry of Some Special Projective Varieties PDF eBook |
Author | Francesco Russo |
Publisher | Springer |
Pages | 257 |
Release | 2016-01-25 |
Genre | Mathematics |
ISBN | 3319267655 |
Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.