An Introduction to Probabilistic Number Theory

An Introduction to Probabilistic Number Theory
Title An Introduction to Probabilistic Number Theory PDF eBook
Author Emmanuel Kowalski
Publisher Cambridge University Press
Pages 271
Release 2021-05-06
Genre Mathematics
ISBN 1108899560

Download An Introduction to Probabilistic Number Theory Book in PDF, Epub and Kindle

Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.

Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory
Title Introduction to Analytic and Probabilistic Number Theory PDF eBook
Author G. Tenenbaum
Publisher Cambridge University Press
Pages 180
Release 1995-06-30
Genre Mathematics
ISBN 9780521412612

Download Introduction to Analytic and Probabilistic Number Theory Book in PDF, Epub and Kindle

This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.

Introduction to Probability

Introduction to Probability
Title Introduction to Probability PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Pages 544
Release 2008-07-01
Genre Mathematics
ISBN 188652923X

Download Introduction to Probability Book in PDF, Epub and Kindle

An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

High-Dimensional Probability

High-Dimensional Probability
Title High-Dimensional Probability PDF eBook
Author Roman Vershynin
Publisher Cambridge University Press
Pages 299
Release 2018-09-27
Genre Business & Economics
ISBN 1108415199

Download High-Dimensional Probability Book in PDF, Epub and Kindle

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Introduction to Probability

Introduction to Probability
Title Introduction to Probability PDF eBook
Author David F. Anderson
Publisher Cambridge University Press
Pages 447
Release 2017-11-02
Genre Mathematics
ISBN 110824498X

Download Introduction to Probability Book in PDF, Epub and Kindle

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Introduction to Probability Models

Introduction to Probability Models
Title Introduction to Probability Models PDF eBook
Author Sheldon M. Ross
Publisher Academic Press
Pages 801
Release 2006-12-11
Genre Mathematics
ISBN 0123756871

Download Introduction to Probability Models Book in PDF, Epub and Kindle

Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics

Number Theory Arising From Finite Fields

Number Theory Arising From Finite Fields
Title Number Theory Arising From Finite Fields PDF eBook
Author John Knopfmacher
Publisher CRC Press
Pages 418
Release 2001-04-10
Genre Mathematics
ISBN 0203908155

Download Number Theory Arising From Finite Fields Book in PDF, Epub and Kindle

"Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions