Introduction to Symplectic Dirac Operators

Introduction to Symplectic Dirac Operators
Title Introduction to Symplectic Dirac Operators PDF eBook
Author Katharina Habermann
Publisher Springer
Pages 131
Release 2006-10-28
Genre Mathematics
ISBN 3540334211

Download Introduction to Symplectic Dirac Operators Book in PDF, Epub and Kindle

This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.

Dirac Operators in Riemannian Geometry

Dirac Operators in Riemannian Geometry
Title Dirac Operators in Riemannian Geometry PDF eBook
Author Thomas Friedrich
Publisher American Mathematical Soc.
Pages 213
Release 2000
Genre Mathematics
ISBN 0821820559

Download Dirac Operators in Riemannian Geometry Book in PDF, Epub and Kindle

For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.

An Introduction to Dirac Operators on Manifolds

An Introduction to Dirac Operators on Manifolds
Title An Introduction to Dirac Operators on Manifolds PDF eBook
Author Jan Cnops
Publisher Springer Science & Business Media
Pages 219
Release 2012-12-06
Genre Mathematics
ISBN 1461200652

Download An Introduction to Dirac Operators on Manifolds Book in PDF, Epub and Kindle

The chapters on Clifford algebra and differential geometry can be used as an introduction to the topics, and are suitable for senior undergraduates and graduates. The other chapters are also accessible at this level.; This self-contained book requires very little previous knowledge of the domains covered, although the reader will benefit from knowledge of complex analysis, which gives the basic example of a Dirac operator.; The more advanced reader will appreciate the fresh approach to the theory, as well as the new results on boundary value theory.; Concise, but self-contained text at the introductory grad level. Systematic exposition.; Clusters well with other Birkhäuser titles in mathematical physics.; Appendix. General Manifolds * List of Symbols * Bibliography * Index

Heat Kernels and Dirac Operators

Heat Kernels and Dirac Operators
Title Heat Kernels and Dirac Operators PDF eBook
Author Nicole Berline
Publisher Springer Science & Business Media
Pages 384
Release 2003-12-08
Genre Mathematics
ISBN 9783540200628

Download Heat Kernels and Dirac Operators Book in PDF, Epub and Kindle

In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.

The Dirac Spectrum

The Dirac Spectrum
Title The Dirac Spectrum PDF eBook
Author Nicolas Ginoux
Publisher Springer
Pages 168
Release 2009-05-30
Genre Mathematics
ISBN 3642015700

Download The Dirac Spectrum Book in PDF, Epub and Kindle

This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, it presents the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries.

The Atiyah-Patodi-Singer Index Theorem

The Atiyah-Patodi-Singer Index Theorem
Title The Atiyah-Patodi-Singer Index Theorem PDF eBook
Author Richard Melrose
Publisher CRC Press
Pages 392
Release 1993-03-31
Genre Mathematics
ISBN 1439864608

Download The Atiyah-Patodi-Singer Index Theorem Book in PDF, Epub and Kindle

Based on the lecture notes of a graduate course given at MIT, this sophisticated treatment leads to a variety of current research topics and will undoubtedly serve as a guide to further studies.

Dirac Operators in Representation Theory

Dirac Operators in Representation Theory
Title Dirac Operators in Representation Theory PDF eBook
Author Jing-Song Huang
Publisher Springer Science & Business Media
Pages 205
Release 2007-05-27
Genre Mathematics
ISBN 0817644938

Download Dirac Operators in Representation Theory Book in PDF, Epub and Kindle

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.