Introduction to Differential Geometry
Title | Introduction to Differential Geometry PDF eBook |
Author | Joel W. Robbin |
Publisher | Springer Nature |
Pages | 426 |
Release | 2022-01-12 |
Genre | Mathematics |
ISBN | 3662643405 |
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
An Introduction to Differential Geometry
Title | An Introduction to Differential Geometry PDF eBook |
Author | T. J. Willmore |
Publisher | Courier Corporation |
Pages | 338 |
Release | 2013-05-13 |
Genre | Mathematics |
ISBN | 0486282104 |
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Introduction to Smooth Manifolds
Title | Introduction to Smooth Manifolds PDF eBook |
Author | John M. Lee |
Publisher | Springer Science & Business Media |
Pages | 646 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 0387217525 |
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Elementary Differential Geometry
Title | Elementary Differential Geometry PDF eBook |
Author | A.N. Pressley |
Publisher | Springer Science & Business Media |
Pages | 336 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 1447136969 |
Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
First Steps in Differential Geometry
Title | First Steps in Differential Geometry PDF eBook |
Author | Andrew McInerney |
Publisher | Springer Science & Business Media |
Pages | 420 |
Release | 2013-07-09 |
Genre | Mathematics |
ISBN | 1461477328 |
Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.
A Course in Differential Geometry
Title | A Course in Differential Geometry PDF eBook |
Author | Thierry Aubin |
Publisher | American Mathematical Soc. |
Pages | 198 |
Release | 2001 |
Genre | Mathematics |
ISBN | 082182709X |
This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.
Introduction to Differential Geometry for Engineers
Title | Introduction to Differential Geometry for Engineers PDF eBook |
Author | Brian F. Doolin |
Publisher | Courier Corporation |
Pages | 178 |
Release | 2013-05-13 |
Genre | Mathematics |
ISBN | 0486281949 |
This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.