An Experimental Study of Soot Formation in Hydro-carbon/air Premixed Flames

An Experimental Study of Soot Formation in Hydro-carbon/air Premixed Flames
Title An Experimental Study of Soot Formation in Hydro-carbon/air Premixed Flames PDF eBook
Author Ingjuang Hwang
Publisher
Pages 86
Release 1984
Genre
ISBN

Download An Experimental Study of Soot Formation in Hydro-carbon/air Premixed Flames Book in PDF, Epub and Kindle

Soot Formation in Combustion

Soot Formation in Combustion
Title Soot Formation in Combustion PDF eBook
Author Henning Bockhorn
Publisher Springer Science & Business Media
Pages 595
Release 2013-03-08
Genre Science
ISBN 3642851673

Download Soot Formation in Combustion Book in PDF, Epub and Kindle

Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures
Title Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF eBook
Author Hyun Il Joo
Publisher
Pages
Release 2010
Genre
ISBN

Download Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures Book in PDF, Epub and Kindle

An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximum carbon conversion to soot is approximately 6.5 % at 30 atm and remained constant at higher pressures.

Particulate Carbon

Particulate Carbon
Title Particulate Carbon PDF eBook
Author Donald Siegla
Publisher Springer Science & Business Media
Pages 500
Release 2013-11-11
Genre Technology & Engineering
ISBN 1475761376

Download Particulate Carbon Book in PDF, Epub and Kindle

The goal of the symposium, "Particulate Carbon: Formation During Combustion", held at the General Motors Research Laboratories on October 15 and 16, 1980, was to discuss fundamental aspects of soot formation and oxidation in combustion systems and to stimulate new research by extensive interactions among the participants. This book contains lhe papers and discussions of that symposium, the 26th in an annual series covering many different disciplines which are timely and of interest to both General Motors and the technical community at large. The subject of this symposium has considerable relevance for man in his effort to control and preserve his environment. Emission of particulate carbon into the atmos phere from combustion sources is of concern to scientists and laymen alike. The hope of reducing this emission clearly requires an understanding of its formation during the combustion process, itself an area of considerable long-term research interest. It is our hope that this symposium has served to summarize what is known so that what remains to be learned can be pursued with greater vigor.

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures
Title Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF eBook
Author
Publisher
Pages
Release 2006
Genre
ISBN

Download Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures Book in PDF, Epub and Kindle

An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximu.

Oxygen-Enhanced Combustion

Oxygen-Enhanced Combustion
Title Oxygen-Enhanced Combustion PDF eBook
Author Charles E. Baukal, Jr.
Publisher CRC Press
Pages 392
Release 2010-12-12
Genre Technology & Engineering
ISBN 9781420050257

Download Oxygen-Enhanced Combustion Book in PDF, Epub and Kindle

Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion - new technology producing oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include numerous environmental benefits as well as increased energy efficiency and productivity. The text compiles information about using oxygen to enhance high temperature industrial heating and melting processes - serving as a unique resource for specialists implementing the use of oxygen in combustion systems; combustion equipment and industrial gas suppliers; researchers; funding agencies for advanced combustion technologies; and agencies developing regulations for safe, efficient, and environmentally friendly combustion systems. Oxygen-Enhanced Combustion: Examines the fundamentals of using oxygen in combustion, pollutant emissions, oxygen production, and heat transfer Describes ferrous and nonferrous metals, glass, and incineration Discusses equipment, safety, design, and fuels Assesses recent trends including stricter environmental regulations, lower-cost methods of producing oxygen, improved burner designs, and increasing fuel costs Emphasizing applications and basic principles, this book will act as the primary resource for mechanical, chemical, aerospace, and environmental engineers and scientists; physical chemists; fuel technologists; fluid dynamists; and combustion design engineers. Topics include: General benefits Economics Potential problems Pollutant emissions Oxygen production Adsorption Air separation Heat transfer Ferrous metals Melting and refining processes Nonferrous metals Minerals Glass furnaces Incineration Safety Handling and storage Equipment design Flow controls Fuels

An Experimental Study of Soot Formation and Oxidation in Axisymmetric Counterflow Diffusion Flames

An Experimental Study of Soot Formation and Oxidation in Axisymmetric Counterflow Diffusion Flames
Title An Experimental Study of Soot Formation and Oxidation in Axisymmetric Counterflow Diffusion Flames PDF eBook
Author Keunchul Lee
Publisher
Pages 276
Release 1991
Genre Combustion
ISBN

Download An Experimental Study of Soot Formation and Oxidation in Axisymmetric Counterflow Diffusion Flames Book in PDF, Epub and Kindle