Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells

Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells
Title Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells PDF eBook
Author Peipei Xin
Publisher
Pages 144
Release 2017
Genre
ISBN 9781369681130

Download Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells Book in PDF, Epub and Kindle

Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. ☐ This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. ☐ First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. ☐ Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. ☐ Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options – CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

Key Developments In CuInGaSe2 Thin Film Solar Cell

Key Developments In CuInGaSe2 Thin Film Solar Cell
Title Key Developments In CuInGaSe2 Thin Film Solar Cell PDF eBook
Author Daniele Menossi
Publisher LAP Lambert Academic Publishing
Pages 212
Release 2014-05-23
Genre
ISBN 9783659334498

Download Key Developments In CuInGaSe2 Thin Film Solar Cell Book in PDF, Epub and Kindle

Nowadays, thin-film solar cells potentially offer a suitable technology for solving the energy production problem with an environmentally friendly method. Besides, thin film technologies show advantages over their bulk-semiconductor counterparts due to their lighter weight, flexible shape and device fabrication schemes and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV materials and devices, few are offering a comprehensive overview of the fast development in thin film Cu(In, Ga)Se2-based solar cells. "Key Developments in CuInGaSe2 Thin Film Solar Cell" would provide an international perspective on the latest research on this topic. It presents a wide range of scientific and technological aspects on basic properties and device physics of high-efficiency CIGS solar cells from the last research frontier point of view. The book was designed for photovoltaic researchers and scientists, students and engineers, with the mission to provide knowledge of the mechanisms, materials, devices, and applications of CIGS-based technology necessary to develop cheaper and cleaner renewable energy in the coming years.

Solar Cells and Modules

Solar Cells and Modules
Title Solar Cells and Modules PDF eBook
Author Arvind Shah
Publisher Springer Nature
Pages 357
Release 2020-07-16
Genre Science
ISBN 3030464873

Download Solar Cells and Modules Book in PDF, Epub and Kindle

This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling

TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling
Title TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling PDF eBook
Author The Minerals, Metals & Materials Society (TMS)
Publisher John Wiley & Sons
Pages 987
Release 2011-04-12
Genre Technology & Engineering
ISBN 1118062124

Download TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling Book in PDF, Epub and Kindle

Presents the most up-to-date information on the state of Materials Fabrication, Properties, Characterization, and Modeling. It's a great mix of practical applied technology and hard science, which is of invaluable benefit to the global industry.

Development of Cu(In, Ga)Se2 Superstrate Thin Film Solar Cells

Development of Cu(In, Ga)Se2 Superstrate Thin Film Solar Cells
Title Development of Cu(In, Ga)Se2 Superstrate Thin Film Solar Cells PDF eBook
Author
Publisher
Pages 0
Release 2001
Genre
ISBN

Download Development of Cu(In, Ga)Se2 Superstrate Thin Film Solar Cells Book in PDF, Epub and Kindle

Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing

Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing
Title Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing PDF eBook
Author Christopher J. Hibberd
Publisher
Pages
Release 2009
Genre
ISBN

Download Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing Book in PDF, Epub and Kindle

Solar photovoltaic modules provide clean electricity from sunlight but will not be able tocompete on an open market until the cost of the electricity they produce is comparable to thatproduced by traditional methods. At present, modules based on crystalline silicon wafer solarcells account for nearly 90% of photovoltaic production capacity. However, it is anticipatedthat the ultimate cost reduction achievable for crystalline silicon solar cell production will besomewhat limited and that thin film solar cells may offer a cheaper alternative in the longterm. The highest energy conversion efficiencies reported for thin film solar cells have beenfor devices based around chalcopyrite Cu(In, Ga)(Se, S)2 photovoltaic absorbers. The most efficient Cu(In, Ga)(Se, S)2 solar cells contain absorber layers deposited by vacuumco-evaporation of the elements. However, the cost of ownership of large area vacuumevaporation technology is high and may be a limiting factor in the cost reductions achievablefor Cu(In, Ga)(Se, S)2 based solar cells. Therefore, many alternative deposition methods areunder investigation. Despite almost thirty companies being in the process of commercialisingthese technologies there is no consensus as to which deposition method will lead to the mostcost effective product. Non-vacuum deposition techniques involving powders and chemical solutions potentiallyoffer significant reductions in the cost of Cu(In, Ga)(Se, S)2 absorber layer deposition ascompared to their vacuum counterparts. A wide range of such approaches has beeninvestigated for thirty years and the gap between the world record Cu(In, Ga)(Se, S)2 solarcell and the best devices containing non-vacuum deposited absorber layers has closedsignificantly in recent years. Nevertheless, no one technique has demonstrated its superiorityand the best results are still achieved with some of the most complex approaches. The work presented here involved the development and investigation of a new process forperforming one of the stages of non-vacuum deposition of Cu(In, Ga)(Se, S)2 absorber layers. The new process incorporates copper into an initial Group III-VI precursor layer, e.g. indiumgallium selenide, through an ion exchange reaction performed in solution. The ion exchangereaction requires only very simple, low-cost equipment and proceeds at temperatures over1000?C lower than required for the evaporation of Cu under vacuum. In the new process, indium (gallium) selenide initial precursor layers are immersed insolutions containing Cu ions. During immersion an exchange reaction occurs and Cu ionsfrom the solution exchange places with Group III ions in the layer. This leads to theformation of an intimately bonded, laterally homogeneous copper selenide? indium (gallium)selenide modified precursor layer with the same morphology as the initial precursor. These modified precursor layers were converted to single phase chalcopyrite CuInSe2 andCu(In, Ga)Se2 by annealing with Se in a tube furnace system. Investigation of the annealingtreatment revealed that a series of phase transformations, beginning at low temperature, leadto chalcopyrite formation. Control of the timing of the Se supply was demonstrated toprevent reactions that were deemed detrimental to the morphology of the resultingchalcopyrite layers. When vacuum evaporated indium (gallium) selenide layers were used asinitial precursors, solar cells produced from the absorber layers exhibited energy conversionefficiencies of up to 4%. While these results are considered promising, the devices werecharacterised by very low open circuit voltages and parallel resistances. Rapid thermal processing was applied to the modified precursor layers in an attempt tofurther improve their conversion into chalcopyrite material. Despite only a small number ofsolar cells being fabricated using rapid thermal processing, improvements in open circuitvoltage of close to 150mV were achieved. However, due to increases in series resistance andreductions in current collection only small increases in solar cell efficiency were recorded. Rapid thermal processing was also used to demonstrate synthesis of single phase CuInS2from modified precursor layers based on non-vacuum deposited indium sulphide. Non-vacuum deposition methods provide many opportunities for the incorporation ofundesirable impurities into the deposited layers. Analysis of the precursor layers developedduring this work revealed that alkali atoms from the complexant used in the ion exchangebaths are incorporated into the precursor layers alongside the Cu. Alkali atoms exhibitpronounced electronic and structural effects on Cu(In, Ga)Se2 layers and are beneficial in lowconcentrations. However, excess alkali atoms are detrimental to Cu(In, Ga)Se2 solar cellperformance and the problems encountered with cells produced here are consistent with theeffects reported in the literature for excess alkali incorporation. It is therefore expected thatfurther improvements in solar cell efficiency might be achieved following reformulation ofthe ion exchange bath chemistry.

Advances in Composite Materials for Medicine and Nanotechnology

Advances in Composite Materials for Medicine and Nanotechnology
Title Advances in Composite Materials for Medicine and Nanotechnology PDF eBook
Author Brahim Attaf
Publisher BoD – Books on Demand
Pages 664
Release 2011-04-01
Genre Technology & Engineering
ISBN 9533072350

Download Advances in Composite Materials for Medicine and Nanotechnology Book in PDF, Epub and Kindle

Due to their good mechanical characteristics in terms of stiffness and strength coupled with mass-saving advantage and other attractive physico-chemical properties, composite materials are successfully used in medicine and nanotechnology fields. To this end, the chapters composing the book have been divided into the following sections: medicine, dental and pharmaceutical applications; nanocomposites for energy efficiency; characterization and fabrication, all of which provide an invaluable overview of this fascinating subject area. The book presents, in addition, some studies carried out in orthopedic and stomatological applications and others aiming to design and produce new devices using the latest advances in nanotechnology. This wide variety of theoretical, numerical and experimental results can help specialists involved in these disciplines to enhance competitiveness and innovation.