Algebraic Geometry: Further study of schemes

Algebraic Geometry: Further study of schemes
Title Algebraic Geometry: Further study of schemes PDF eBook
Author 健爾·上野
Publisher American Mathematical Soc.
Pages 222
Release 2003
Genre Mathematics
ISBN 9780821813584

Download Algebraic Geometry: Further study of schemes Book in PDF, Epub and Kindle

This is the third part of the textbook on algebraic geometry by Kenji Ueno (the first two parts were published by the AMS as Volumes 185 and 197 of this series). Here the author presents the theory of schemes and sheaves beyond introductory notions, with the goal of studying properties of schemes and coherent sheaves necessary for full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion and Zariski's main theorem. The author also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions, which makes it (together with two previous parts) appropriate for a graduate course on algebraic geometry or for self-study.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Title Introduction to Algebraic Geometry PDF eBook
Author Steven Dale Cutkosky
Publisher American Mathematical Soc.
Pages 498
Release 2018-06-01
Genre Mathematics
ISBN 1470435187

Download Introduction to Algebraic Geometry Book in PDF, Epub and Kindle

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Algebraic Geometry

Algebraic Geometry
Title Algebraic Geometry PDF eBook
Author Robin Hartshorne
Publisher Springer Science & Business Media
Pages 511
Release 2013-06-29
Genre Mathematics
ISBN 1475738498

Download Algebraic Geometry Book in PDF, Epub and Kindle

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebraic Geometry III

Algebraic Geometry III
Title Algebraic Geometry III PDF eBook
Author A.N. Parshin
Publisher Springer Science & Business Media
Pages 275
Release 2013-04-17
Genre Mathematics
ISBN 3662036622

Download Algebraic Geometry III Book in PDF, Epub and Kindle

This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.

Algebraic Geometry II

Algebraic Geometry II
Title Algebraic Geometry II PDF eBook
Author David Mumford
Publisher
Pages 0
Release 2015
Genre Algebraic varieties
ISBN 9789380250809

Download Algebraic Geometry II Book in PDF, Epub and Kindle

Several generations of students of algebraic geometry have learned the subject from David Mumford's fabled "Red Book" containing notes of his lectures at Harvard University. This book contains what Mumford had intended to be Volume II. It covers the material in the "Red Book" in more depth with several more topics added.

Basic Algebraic Geometry 2

Basic Algebraic Geometry 2
Title Basic Algebraic Geometry 2 PDF eBook
Author Igor Rostislavovich Shafarevich
Publisher Springer Science & Business Media
Pages 292
Release 1994
Genre Mathematics
ISBN 9783540575542

Download Basic Algebraic Geometry 2 Book in PDF, Epub and Kindle

The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.

Algebraic Geometry I: Schemes

Algebraic Geometry I: Schemes
Title Algebraic Geometry I: Schemes PDF eBook
Author Ulrich Görtz
Publisher Springer Nature
Pages 634
Release 2020-07-27
Genre Mathematics
ISBN 3658307331

Download Algebraic Geometry I: Schemes Book in PDF, Epub and Kindle

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.