Algebraic Geometry For Robotics And Control Theory

Algebraic Geometry For Robotics And Control Theory
Title Algebraic Geometry For Robotics And Control Theory PDF eBook
Author Laura Menini
Publisher World Scientific
Pages 615
Release 2021-09-02
Genre Technology & Engineering
ISBN 1800610475

Download Algebraic Geometry For Robotics And Control Theory Book in PDF, Epub and Kindle

The development of inexpensive and fast computers, coupled with the discovery of efficient algorithms for dealing with polynomial equations, has enabled exciting new applications of algebraic geometry and commutative algebra. Algebraic Geometry for Robotics and Control Theory shows how tools borrowed from these two fields can be efficiently employed to solve relevant problem arising in robotics and control theory.After a brief introduction to various algebraic objects and techniques, the book first covers a wide variety of topics concerning control theory, robotics, and their applications. Specifically this book shows how these computational and theoretical methods can be coupled with classical control techniques to: solve the inverse kinematics of robotic arms; design observers for nonlinear systems; solve systems of polynomial equalities and inequalities; plan the motion of mobile robots; analyze Boolean networks; solve (possibly, multi-objective) optimization problems; characterize the robustness of linear; time-invariant plants; and certify positivity of polynomials.

Geometric Algebra Applications Vol. II

Geometric Algebra Applications Vol. II
Title Geometric Algebra Applications Vol. II PDF eBook
Author Eduardo Bayro-Corrochano
Publisher Springer Nature
Pages 609
Release 2020-06-19
Genre Mathematics
ISBN 3030349780

Download Geometric Algebra Applications Vol. II Book in PDF, Epub and Kindle

This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.

Mathematical Control Theory and Finance

Mathematical Control Theory and Finance
Title Mathematical Control Theory and Finance PDF eBook
Author Andrey Sarychev
Publisher Springer Science & Business Media
Pages 418
Release 2009-03-31
Genre Mathematics
ISBN 354069532X

Download Mathematical Control Theory and Finance Book in PDF, Epub and Kindle

Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.

Mathematical Control Theory

Mathematical Control Theory
Title Mathematical Control Theory PDF eBook
Author Eduardo D. Sontag
Publisher Springer Science & Business Media
Pages 543
Release 2013-11-21
Genre Mathematics
ISBN 1461205778

Download Mathematical Control Theory Book in PDF, Epub and Kindle

Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini
Title Numerically Solving Polynomial Systems with Bertini PDF eBook
Author Daniel J. Bates
Publisher SIAM
Pages 372
Release 2013-11-08
Genre Science
ISBN 1611972698

Download Numerically Solving Polynomial Systems with Bertini Book in PDF, Epub and Kindle

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation
Title A Mathematical Introduction to Robotic Manipulation PDF eBook
Author Richard M. Murray
Publisher CRC Press
Pages 488
Release 2017-12-14
Genre Technology & Engineering
ISBN 1351469789

Download A Mathematical Introduction to Robotic Manipulation Book in PDF, Epub and Kindle

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.

Geometrical Methods in Robotics

Geometrical Methods in Robotics
Title Geometrical Methods in Robotics PDF eBook
Author J.M. Selig
Publisher Springer Science & Business Media
Pages 273
Release 2013-03-09
Genre Computers
ISBN 1475724845

Download Geometrical Methods in Robotics Book in PDF, Epub and Kindle

The main aim of this book is to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. These topics seem to be quite fashionable at the moment, but most of the robotics books that touch on these topics tend to treat Lie groups as little more than a fancy notation. I hope to show the power and elegance of these methods as they apply to problems in robotics. A subsidiary aim of the book is to reintroduce some old ideas by describing them in modem notation, particularly Study's Quadric-a description of the group of rigid motions in three dimensions as an algebraic variety (well, actually an open subset in an algebraic variety)-as well as some of the less well known aspects of Ball's theory of screws. In the first four chapters, a careful exposition of the theory of Lie groups and their Lie algebras is given. Except for the simplest examples, all examples used to illustrate these ideas are taken from robotics. So, unlike most standard texts on Lie groups, emphasis is placed on a group that is not semi-simple-the group of proper Euclidean motions in three dimensions. In particular, the continuous subgroups of this group are found, and the elements of its Lie algebra are identified with the surfaces of the lower Reuleaux pairs. These surfaces were first identified by Reuleaux in the latter half of the 19th century.