Algebraic Equations

Algebraic Equations
Title Algebraic Equations PDF eBook
Author Edgar Dehn
Publisher Courier Corporation
Pages 225
Release 2012-09-05
Genre Mathematics
ISBN 0486155102

Download Algebraic Equations Book in PDF, Epub and Kindle

Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
Title Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations PDF eBook
Author Uri M. Ascher
Publisher SIAM
Pages 304
Release 1998-08-01
Genre Mathematics
ISBN 0898714125

Download Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations Book in PDF, Epub and Kindle

This book contains all the material necessary for a course on the numerical solution of differential equations.

Differential-algebraic Equations

Differential-algebraic Equations
Title Differential-algebraic Equations PDF eBook
Author Peter Kunkel
Publisher European Mathematical Society
Pages 396
Release 2006
Genre Boundary value problems
ISBN 9783037190173

Download Differential-algebraic Equations Book in PDF, Epub and Kindle

Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.

General Theory of Algebraic Equations

General Theory of Algebraic Equations
Title General Theory of Algebraic Equations PDF eBook
Author Etienne Bézout
Publisher Princeton University Press
Pages 363
Release 2009-01-10
Genre Mathematics
ISBN 1400826969

Download General Theory of Algebraic Equations Book in PDF, Epub and Kindle

This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.

Differential-Algebraic Equations: A Projector Based Analysis

Differential-Algebraic Equations: A Projector Based Analysis
Title Differential-Algebraic Equations: A Projector Based Analysis PDF eBook
Author René Lamour
Publisher Springer Science & Business Media
Pages 667
Release 2013-01-19
Genre Mathematics
ISBN 3642275559

Download Differential-Algebraic Equations: A Projector Based Analysis Book in PDF, Epub and Kindle

Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to expose the impressive complexity of general DAEs from an analytical point of view, to describe the state of the art as well as open problems and so to motivate further research to this versatile, extra-ordinary topic from a broader mathematical perspective. The book elaborates a new general structural analysis capturing linear and nonlinear DAEs in a hierarchical way. The DAE structure is exposed by means of special projector functions. Numerical integration issues and computational aspects are treated also in this context.

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Numerical Solution of Initial-value Problems in Differential-algebraic Equations
Title Numerical Solution of Initial-value Problems in Differential-algebraic Equations PDF eBook
Author K. E. Brenan
Publisher SIAM
Pages 268
Release 1996-01-01
Genre Mathematics
ISBN 9781611971224

Download Numerical Solution of Initial-value Problems in Differential-algebraic Equations Book in PDF, Epub and Kindle

Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.

Algebraic Equations

Algebraic Equations
Title Algebraic Equations PDF eBook
Author George Ballard Mathews
Publisher
Pages 76
Release 1907
Genre Equations, Theory of
ISBN

Download Algebraic Equations Book in PDF, Epub and Kindle