Algebraic Combinatorics And Quantum Groups
Title | Algebraic Combinatorics And Quantum Groups PDF eBook |
Author | Naihuan Jing |
Publisher | World Scientific |
Pages | 171 |
Release | 2003-06-27 |
Genre | Science |
ISBN | 9814485500 |
Algebraic combinatorics has evolved into one of the most active areas of mathematics during the last several decades. Its recent developments have become more interactive with not only its traditional field representation theory but also algebraic geometry, harmonic analysis and mathematical physics.This book presents articles from some of the key contributors in the area. It covers Hecke algebras, Hall algebras, the Macdonald polynomial and its deviations, and their relations with other fields.
Quantum Groups
Title | Quantum Groups PDF eBook |
Author | Christian Kassel |
Publisher | Springer Science & Business Media |
Pages | 540 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461207835 |
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Introduction to Quantum Groups and Crystal Bases
Title | Introduction to Quantum Groups and Crystal Bases PDF eBook |
Author | Jin Hong |
Publisher | American Mathematical Soc. |
Pages | 327 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821828746 |
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
Algebraic Combinatorics and Coinvariant Spaces
Title | Algebraic Combinatorics and Coinvariant Spaces PDF eBook |
Author | Francois Bergeron |
Publisher | CRC Press |
Pages | 227 |
Release | 2009-07-06 |
Genre | Mathematics |
ISBN | 1439865078 |
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Foundations of Quantum Group Theory
Title | Foundations of Quantum Group Theory PDF eBook |
Author | Shahn Majid |
Publisher | Cambridge University Press |
Pages | 668 |
Release | 2000 |
Genre | Group theory |
ISBN | 9780521648684 |
A graduate level text which systematically lays out the foundations of Quantum Groups.
Lectures on Algebraic Quantum Groups
Title | Lectures on Algebraic Quantum Groups PDF eBook |
Author | Ken Brown |
Publisher | Birkhäuser |
Pages | 339 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 303488205X |
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
Tensor Categories
Title | Tensor Categories PDF eBook |
Author | Pavel Etingof |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2016-08-05 |
Genre | Mathematics |
ISBN | 1470434415 |
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.