Advances in Turbulence 3
Title | Advances in Turbulence 3 PDF eBook |
Author | Arne V. Johansson |
Publisher | Springer Science & Business Media |
Pages | 541 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642843999 |
The book covers the following main topics: turbulence structure, transition, dynamical systems in relation to transition, turbulent combustion and mixing, turbulence affected by body forces, turbulence modeling, drag reduction, and novel experimental techniques.
Progress in Turbulence III
Title | Progress in Turbulence III PDF eBook |
Author | Joachim Peinke |
Publisher | Springer Science & Business Media |
Pages | 277 |
Release | 2009-12-28 |
Genre | Technology & Engineering |
ISBN | 3642022251 |
This third issue on “progress in turbulence” is based on the third ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Researchers from the engineering and physical sciences gathered to present latest results on the rather notorious difficult and essentially unsolved problem of turbulence. This challenge is driving us in doing basic as well as applied research. Clear progress can be seen from these contributions in different aspects. New - phisticated methods achieve more and more insights into the underlying compl- ity of turbulence. The increasing power of computational methods allows studying flows in more details. Increasing demands of high precision large turbulence - periments become aware. In further applications turbulence seem to play a central issue. As such a new field this time the impact of turbulence on the wind energy conversion process has been chosen. Beside all progress our ability to numerically calculate high Reynolds number turbulent flows from Navier-Stokes equations at high precision, say the drag co- ficient of an airfoil below one percent, is rather limited, not to speak of our lack of knowledge to compute this analytically from first principles. This is rather - markable since the fundamental equations of fluid flow, the Navier-Stokes eq- tions, have been known for more than 150 years.
Advanced Approaches in Turbulence
Title | Advanced Approaches in Turbulence PDF eBook |
Author | Paul Durbin |
Publisher | Elsevier |
Pages | 554 |
Release | 2021-07-24 |
Genre | Technology & Engineering |
ISBN | 0128208902 |
Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis
Advances in Applied Mechanics
Title | Advances in Applied Mechanics PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 339 |
Release | 1962-01-01 |
Genre | Technology & Engineering |
ISBN | 0080563856 |
Advances in Applied Mechanics
Advances In Wave Turbulence
Title | Advances In Wave Turbulence PDF eBook |
Author | Victor Shrira |
Publisher | World Scientific |
Pages | 294 |
Release | 2013-05-10 |
Genre | Mathematics |
ISBN | 9814520802 |
Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.
Applied Computational Fluid Dynamics and Turbulence Modeling
Title | Applied Computational Fluid Dynamics and Turbulence Modeling PDF eBook |
Author | Sal Rodriguez |
Publisher | Springer Nature |
Pages | 316 |
Release | 2019-12-06 |
Genre | Computers |
ISBN | 3030286916 |
This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.
Turbulent Combustion Modeling
Title | Turbulent Combustion Modeling PDF eBook |
Author | Tarek Echekki |
Publisher | Springer Science & Business Media |
Pages | 496 |
Release | 2010-12-25 |
Genre | Technology & Engineering |
ISBN | 9400704127 |
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.