Advanced Number Theory with Applications
Title | Advanced Number Theory with Applications PDF eBook |
Author | Richard A. Mollin |
Publisher | CRC Press |
Pages | 440 |
Release | 2009-08-26 |
Genre | Computers |
ISBN | 1420083295 |
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Advances In Number Theory And Applied Analysis
Title | Advances In Number Theory And Applied Analysis PDF eBook |
Author | Pradip Debnath |
Publisher | World Scientific |
Pages | 463 |
Release | 2023-05-08 |
Genre | Mathematics |
ISBN | 9811272611 |
Presently, the exploration of the applications of different techniques and tools of number theory and mathematical analysis are extensively prevalent in various areas of engineering, mathematical, physical, biological and statistical sciences. This book will present the most recent developments in these two fields through contributions from eminent scientists and mathematicians worldwide.The book will present the current state of the art development in these two areas through original new contributions and surveys. As such, readers will find several useful tools and techniques to develop their skills and expertise in number theory and applied analysis. New research directions are also indicated in each of the chapters. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in number theory and mathematical analysis. The readers of this book will require minimum prerequisites of analysis, topology, number theory and functional analysis.
Applied Number Theory
Title | Applied Number Theory PDF eBook |
Author | Harald Niederreiter |
Publisher | Springer |
Pages | 452 |
Release | 2015-09-01 |
Genre | Mathematics |
ISBN | 3319223216 |
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
Discrete Mathematics and Its Applications
Title | Discrete Mathematics and Its Applications PDF eBook |
Author | Kenneth H. Rosen |
Publisher | |
Pages | 109 |
Release | 2007 |
Genre | Computer science |
ISBN | 9780071244749 |
The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation
From Great Discoveries in Number Theory to Applications
Title | From Great Discoveries in Number Theory to Applications PDF eBook |
Author | Michal Křížek |
Publisher | Springer Nature |
Pages | 342 |
Release | 2021-09-21 |
Genre | Mathematics |
ISBN | 3030838994 |
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
Introduction to Number Theory
Title | Introduction to Number Theory PDF eBook |
Author | Anthony Vazzana |
Publisher | CRC Press |
Pages | 530 |
Release | 2007-10-30 |
Genre | Computers |
ISBN | 1584889381 |
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Advanced Mathematical Methods for Scientists and Engineers I
Title | Advanced Mathematical Methods for Scientists and Engineers I PDF eBook |
Author | Carl M. Bender |
Publisher | Springer Science & Business Media |
Pages | 605 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.