Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines
Title Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF eBook
Author Hongsheng Guo
Publisher Frontiers Media SA
Pages 125
Release 2021-03-23
Genre Technology & Engineering
ISBN 2889666212

Download Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines Book in PDF, Epub and Kindle

Dual-Fuel Diesel Engines

Dual-Fuel Diesel Engines
Title Dual-Fuel Diesel Engines PDF eBook
Author Ghazi A. Karim
Publisher CRC Press
Pages 312
Release 2015-03-02
Genre Technology & Engineering
ISBN 1498703097

Download Dual-Fuel Diesel Engines Book in PDF, Epub and Kindle

Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance
Title Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance PDF eBook
Author Richard Folkson
Publisher Woodhead Publishing
Pages 800
Release 2022-07-27
Genre Technology & Engineering
ISBN 0323900283

Download Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance Book in PDF, Epub and Kindle

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. Provides a fully updated reference with significant technological advances and developments in the sector Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry

Natural Gas for Advanced Dual-fuel Combustion Strategies

Natural Gas for Advanced Dual-fuel Combustion Strategies
Title Natural Gas for Advanced Dual-fuel Combustion Strategies PDF eBook
Author
Publisher
Pages 0
Release 2016
Genre
ISBN

Download Natural Gas for Advanced Dual-fuel Combustion Strategies Book in PDF, Epub and Kindle

Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation, respectively, detailed heat release analyses can be performed in order to determine the dominant mode of heat release. The results indicate, for lean conditions, that diesel pilot ignition is controlled by flame propagation and reactivity controlled compression ignition is controlled by autoignition. The results encourage the use of diesel pilot ignition for low-boost stoichiometric engine applications and the use of reactivity controlled compression ignition for high-boost lean-burn engine applications.

Natural Gas Engines

Natural Gas Engines
Title Natural Gas Engines PDF eBook
Author Kalyan Kumar Srinivasan
Publisher Springer
Pages 428
Release 2018-11-03
Genre Technology & Engineering
ISBN 9811333076

Download Natural Gas Engines Book in PDF, Epub and Kindle

This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.

Combustion in a Natural Gas-diesel Fuel Dual-fuel Compression Ignition Engine

Combustion in a Natural Gas-diesel Fuel Dual-fuel Compression Ignition Engine
Title Combustion in a Natural Gas-diesel Fuel Dual-fuel Compression Ignition Engine PDF eBook
Author John Thomas Kubesh
Publisher
Pages 168
Release 1991
Genre Combustion engineering
ISBN

Download Combustion in a Natural Gas-diesel Fuel Dual-fuel Compression Ignition Engine Book in PDF, Epub and Kindle

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions
Title Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions PDF eBook
Author Amin Yousefi
Publisher
Pages 0
Release 2019
Genre
ISBN

Download Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions Book in PDF, Epub and Kindle

Universal concerns about degradation in air quality, stringent emissions regulations, energy scarcity, and global warming have prompted research and development of compressed ignition engines using alternative combustion concepts. Natural gas/diesel dual-fuel combustion is an advanced combustion concept for compression ignition diesel engines, which has attracted global attention in recent years. This combustion concept is accomplished by creating reactivity stratification in the cylinder via the use of two fuels characterized by distinctly different reactivities. The low reactivity and main fuel (i.e., natural gas) is firstly premixed with air and then charged into the cylinder through the intake manifold, and the high reactivity fuel (i.e., diesel) is then injected into the charged mixture through a direct injector. This combustion concept offers prominent benefits in terms of a significant reduction of particulate matter (PM) and sometimes nitrogen oxides (NOx) emissions while maintaining comparable fuel efficiency compared to diesel engine. However, low thermal efficiency and high greenhouse gas (GHG) emissions under low load conditions are major challenges which prevented the implementation of dual-fuel concept in commercial automative engines. The present study investigates different combustion approaches with the aim to enhance combustion performance and reduce emissions of unburned methane, CO, NOx, soot, and GHG of natural gas/diesel dual-fuel engines under different engine load-speed conditions. In particular, the main focus of this thesis is on low load conditions where GHG emissions of conventional natural gas/diesel dual-fuel engine is much higher than that of conventional diesel engine. Alongside the experimental study, a computational fluid dynamic (CFD) model is developed to help understand the behaviour of natural gas/diesel dual-fuel combustion process under different engine load-speed conditions. The studied approaches showed that the fuel efficiency and GHG emissions of natural gas/diesel dual-fuel engine can be significantly improved under low engine load conditions compared to diesel engine.