Advanced Theory of Fractional-Slot Concentrated-Wound Permanent Magnet Synchronous Machines

Advanced Theory of Fractional-Slot Concentrated-Wound Permanent Magnet Synchronous Machines
Title Advanced Theory of Fractional-Slot Concentrated-Wound Permanent Magnet Synchronous Machines PDF eBook
Author Mohammad Farshadnia
Publisher Springer
Pages 266
Release 2018-03-27
Genre Technology & Engineering
ISBN 9811087083

Download Advanced Theory of Fractional-Slot Concentrated-Wound Permanent Magnet Synchronous Machines Book in PDF, Epub and Kindle

This book focuses on the analytical modeling of fractional-slot concentrated-wound (FSCW) interior permanent magnet (IPM) machines and establishes a basis for their magnetic and electrical analysis. Aiming at the precise modeling of FSCW IPM machines’ magnetic and electrical characteristics, it presents a comprehensive mathematical treatment of the stator magneto-motive force (MMF), the IPM rotor non-homogeneous magnetic saturation, and its airgap flux density. The FSCW stator spatial MMF harmonics are analytically formulated, providing a basis on which a novel heuristic algorithm is then proposed for the design of optimal winding layouts for multiphase FSCW stators with different slot/pole combinations. In turn, the proposed mathematical models for the FSCW stator and the IPM rotor are combined to derive detailed mathematical expressions of its operational inductances, electromagnetic torque, torque ripple and their respective subcomponents, as a function of the machine geometry and design parameters. Lastly, the proposed theories and analytical models are validated using finite element analysis and experimental tests on a prototype FSCW IPM machine.

Permanent Magnet Motor Technology

Permanent Magnet Motor Technology
Title Permanent Magnet Motor Technology PDF eBook
Author Jacek F. Gieras
Publisher CRC Press
Pages 591
Release 2009-08-25
Genre Technology & Engineering
ISBN 1439859019

Download Permanent Magnet Motor Technology Book in PDF, Epub and Kindle

The importance of permanent magnet (PM) motor technology and its impact on electromechanical drives has grown exponentially since the publication of the bestselling second edition. The PM brushless motor market has grown considerably faster than the overall motion control market. This rapid growth makes it essential for electrical and electromechanical engineers and students to stay up-to-date on developments in modern electrical motors and drives, including their control, simulation, and CAD. Reflecting innovations in the development of PM motors for electromechanical drives, Permanent Magnet Motor Technology: Design and Applications, Third Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This edition supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors, including the finite element approach, and explains how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter facilitate a lucid understanding of motor operations and characteristics. This 3rd edition of a bestselling reference has been thoroughly revised to include: Chapters on high speed motors and micromotors Advances in permanent magnet motor technology Additional numerical examples and illustrations An increased effort to bridge the gap between theory and industrial applications Modified research results The growing global trend toward energy conservation makes it quite possible that the era of the PM brushless motor drive is just around the corner. This reference book will give engineers, researchers, and graduate-level students the comprehensive understanding required to develop the breakthroughs that will push this exciting technology to the forefront.

Control of Permanent Magnet Synchronous Motors

Control of Permanent Magnet Synchronous Motors
Title Control of Permanent Magnet Synchronous Motors PDF eBook
Author Sadegh Vaez-Zadeh
Publisher Oxford University Press
Pages 384
Release 2018-02-23
Genre Technology & Engineering
ISBN 0191060674

Download Control of Permanent Magnet Synchronous Motors Book in PDF, Epub and Kindle

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.

Design of Rotating Electrical Machines

Design of Rotating Electrical Machines
Title Design of Rotating Electrical Machines PDF eBook
Author Juha Pyrhonen
Publisher John Wiley & Sons
Pages 612
Release 2013-09-26
Genre Technology & Engineering
ISBN 1118701658

Download Design of Rotating Electrical Machines Book in PDF, Epub and Kindle

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.

Power Magnetic Devices

Power Magnetic Devices
Title Power Magnetic Devices PDF eBook
Author Scott D. Sudhoff
Publisher John Wiley & Sons
Pages 0
Release 2014-02-17
Genre Science
ISBN 9781118489994

Download Power Magnetic Devices Book in PDF, Epub and Kindle

Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book to facilitate readers’ comprehension of the analysis and design process Includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book support site.

Brushless Permanent Magnet Motor Design

Brushless Permanent Magnet Motor Design
Title Brushless Permanent Magnet Motor Design PDF eBook
Author Duane C. Hanselman
Publisher
Pages 0
Release 2003
Genre Electric motors, Brushless
ISBN 9781932133639

Download Brushless Permanent Magnet Motor Design Book in PDF, Epub and Kindle

Explaining techniques for magnetic modelling and circuit analysis, this book shows how magnetic circuit analysis applies to motor design. It describes the major aspects of motor operation and design, and develops design equations for radial flux and axial flux motors. It is intended for electrical, electronics and mechanical engineers.

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives
Title Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives PDF eBook
Author Marius Rosu
Publisher John Wiley & Sons
Pages 312
Release 2017-12-18
Genre Science
ISBN 1119103444

Download Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives Book in PDF, Epub and Kindle

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.