Advanced Computational Fluid and Aerodynamics

Advanced Computational Fluid and Aerodynamics
Title Advanced Computational Fluid and Aerodynamics PDF eBook
Author Paul G. Tucker
Publisher Cambridge University Press
Pages 589
Release 2016-03-15
Genre Science
ISBN 1107075904

Download Advanced Computational Fluid and Aerodynamics Book in PDF, Epub and Kindle

This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.

Computational Aerodynamics

Computational Aerodynamics
Title Computational Aerodynamics PDF eBook
Author Antony Jameson
Publisher Cambridge University Press
Pages 632
Release 2022-09-01
Genre Technology & Engineering
ISBN 1108950280

Download Computational Aerodynamics Book in PDF, Epub and Kindle

Computational aerodynamics is a relatively new field in engineering that investigates aircraft flow fields via the simulation of fluid motion and sophisticated numerical algorithms. This book provides an excellent reference to the subject for a wide audience, from graduate students to experienced researchers and professionals in the aerospace engineering field. Opening with the essential elements of computational aerodynamics, the relevant mathematical methods of fluid flow and numerical methods for partial differential equations are presented. Stability theory and shock capturing schemes, and vicious flow and time integration methods are then comprehensively outlined. The final chapters treat more advanced material, including energy stability for nonlinear problems, and higher order methods for unstructured and structured meshes. Presenting over 150 illustrations, including representative calculations on unstructured meshes in color. This book is a rich source of information that will be of interest and importance in this pioneering field.

Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics
Title Unsteady Computational Fluid Dynamics in Aeronautics PDF eBook
Author P.G. Tucker
Publisher Springer Science & Business Media
Pages 432
Release 2013-08-30
Genre Technology & Engineering
ISBN 9400770499

Download Unsteady Computational Fluid Dynamics in Aeronautics Book in PDF, Epub and Kindle

The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Applied Computational Aerodynamics

Applied Computational Aerodynamics
Title Applied Computational Aerodynamics PDF eBook
Author Russell M. Cummings
Publisher Cambridge University Press
Pages 893
Release 2015-04-27
Genre Mathematics
ISBN 1107053749

Download Applied Computational Aerodynamics Book in PDF, Epub and Kindle

This book covers the application of computational fluid dynamics from low-speed to high-speed flows, especially for use in aerospace applications.

Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition
Title Computational Fluid Mechanics and Heat Transfer, Second Edition PDF eBook
Author Richard H. Pletcher
Publisher CRC Press
Pages 828
Release 1997-04-01
Genre Science
ISBN 9781560320463

Download Computational Fluid Mechanics and Heat Transfer, Second Edition Book in PDF, Epub and Kindle

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.

Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics
Title Unsteady Computational Fluid Dynamics in Aeronautics PDF eBook
Author Paul Tucker
Publisher Springer
Pages 413
Release 2013-11-27
Genre Technology & Engineering
ISBN 9789400770508

Download Unsteady Computational Fluid Dynamics in Aeronautics Book in PDF, Epub and Kindle

The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods
Title Advancement of Shock Capturing Computational Fluid Dynamics Methods PDF eBook
Author Keiichi Kitamura
Publisher Springer Nature
Pages 136
Release 2020-10-31
Genre Science
ISBN 9811590117

Download Advancement of Shock Capturing Computational Fluid Dynamics Methods Book in PDF, Epub and Kindle

This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.