Additive Number Theory The Classical Bases
Title | Additive Number Theory The Classical Bases PDF eBook |
Author | Melvyn B. Nathanson |
Publisher | Springer Science & Business Media |
Pages | 362 |
Release | 1996-06-25 |
Genre | Mathematics |
ISBN | 9780387946566 |
[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.
Additive Number Theory The Classical Bases
Title | Additive Number Theory The Classical Bases PDF eBook |
Author | Melvyn B. Nathanson |
Publisher | Springer Science & Business Media |
Pages | 350 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1475738455 |
[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.
Elementary Methods in Number Theory
Title | Elementary Methods in Number Theory PDF eBook |
Author | Melvyn B. Nathanson |
Publisher | Springer Science & Business Media |
Pages | 518 |
Release | 2008-01-11 |
Genre | Mathematics |
ISBN | 0387227385 |
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
A Brief Guide to Algebraic Number Theory
Title | A Brief Guide to Algebraic Number Theory PDF eBook |
Author | H. P. F. Swinnerton-Dyer |
Publisher | Cambridge University Press |
Pages | 164 |
Release | 2001-02-22 |
Genre | Mathematics |
ISBN | 9780521004237 |
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Additive Combinatorics
Title | Additive Combinatorics PDF eBook |
Author | Terence Tao |
Publisher | Cambridge University Press |
Pages | 18 |
Release | 2006-09-14 |
Genre | Mathematics |
ISBN | 1139458345 |
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.
数论导引
Title | 数论导引 PDF eBook |
Author | |
Publisher | |
Pages | 435 |
Release | 2007 |
Genre | Number theory |
ISBN | 9787115156112 |
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。
Additive Number Theory
Title | Additive Number Theory PDF eBook |
Author | David Chudnovsky |
Publisher | Springer Science & Business Media |
Pages | 361 |
Release | 2010-08-26 |
Genre | Mathematics |
ISBN | 0387683615 |
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.