Abelian Varieties with Complex Multiplication and Modular Functions

Abelian Varieties with Complex Multiplication and Modular Functions
Title Abelian Varieties with Complex Multiplication and Modular Functions PDF eBook
Author Goro Shimura
Publisher Princeton University Press
Pages 232
Release 2016-06-02
Genre Mathematics
ISBN 1400883946

Download Abelian Varieties with Complex Multiplication and Modular Functions Book in PDF, Epub and Kindle

Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.

Abelian Varieties with Complex Multiplication and Modular Functions

Abelian Varieties with Complex Multiplication and Modular Functions
Title Abelian Varieties with Complex Multiplication and Modular Functions PDF eBook
Author Gorō Shimura
Publisher
Pages 217
Release 1998
Genre Abelian varieties
ISBN 9780691016566

Download Abelian Varieties with Complex Multiplication and Modular Functions Book in PDF, Epub and Kindle

Algebraic Geometry and Its Applications

Algebraic Geometry and Its Applications
Title Algebraic Geometry and Its Applications PDF eBook
Author Jean Chaumine
Publisher World Scientific
Pages 530
Release 2008
Genre Mathematics
ISBN 9812793429

Download Algebraic Geometry and Its Applications Book in PDF, Epub and Kindle

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.

Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions
Title Introduction to the Arithmetic Theory of Automorphic Functions PDF eBook
Author Gorō Shimura
Publisher Princeton University Press
Pages 292
Release 1971-08-21
Genre Mathematics
ISBN 9780691080925

Download Introduction to the Arithmetic Theory of Automorphic Functions Book in PDF, Epub and Kindle

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Modular Curves and Abelian Varieties

Modular Curves and Abelian Varieties
Title Modular Curves and Abelian Varieties PDF eBook
Author John Cremona
Publisher Birkhäuser
Pages 291
Release 2012-12-06
Genre Mathematics
ISBN 3034879199

Download Modular Curves and Abelian Varieties Book in PDF, Epub and Kindle

This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.

Complex Multiplication

Complex Multiplication
Title Complex Multiplication PDF eBook
Author S. Lang
Publisher Springer Science & Business Media
Pages 191
Release 2012-12-06
Genre Mathematics
ISBN 146125485X

Download Complex Multiplication Book in PDF, Epub and Kindle

The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter 6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .

Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves
Title Abelian l-Adic Representations and Elliptic Curves PDF eBook
Author Jean-Pierre Serre
Publisher CRC Press
Pages 203
Release 1997-11-15
Genre Mathematics
ISBN 1439863865

Download Abelian l-Adic Representations and Elliptic Curves Book in PDF, Epub and Kindle

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one