Combinatorial Algebraic Topology

Combinatorial Algebraic Topology
Title Combinatorial Algebraic Topology PDF eBook
Author Dimitry Kozlov
Publisher Springer Science & Business Media
Pages 416
Release 2008-01-08
Genre Mathematics
ISBN 9783540730514

Download Combinatorial Algebraic Topology Book in PDF, Epub and Kindle

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis
Title Persistence Theory: From Quiver Representations to Data Analysis PDF eBook
Author Steve Y. Oudot
Publisher American Mathematical Soc.
Pages 229
Release 2017-05-17
Genre Mathematics
ISBN 1470434431

Download Persistence Theory: From Quiver Representations to Data Analysis Book in PDF, Epub and Kindle

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Illustrating Mathematics

Illustrating Mathematics
Title Illustrating Mathematics PDF eBook
Author Diana Davis
Publisher American Mathematical Soc.
Pages 171
Release 2020-10-16
Genre Education
ISBN 1470461226

Download Illustrating Mathematics Book in PDF, Epub and Kindle

This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.

Noncommutative Localization in Algebra and Topology

Noncommutative Localization in Algebra and Topology
Title Noncommutative Localization in Algebra and Topology PDF eBook
Author Andrew Ranicki
Publisher Cambridge University Press
Pages 332
Release 2006-02-09
Genre Mathematics
ISBN 9780521681605

Download Noncommutative Localization in Algebra and Topology Book in PDF, Epub and Kindle

Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.

Mathematical Software – ICMS 2020

Mathematical Software – ICMS 2020
Title Mathematical Software – ICMS 2020 PDF eBook
Author Anna Maria Bigatti
Publisher Springer Nature
Pages 491
Release 2020-07-07
Genre Computers
ISBN 3030522008

Download Mathematical Software – ICMS 2020 Book in PDF, Epub and Kindle

This book constitutes the proceedings of the 7th International Conference on Mathematical Software, ICMS 2020, held in Braunschweig, Germany, in July 2020. The 48 papers included in this volume were carefully reviewed and selected from 58 submissions. The program of the 2020 meeting consisted of 20 topical sessions, each of which providing an overview of the challenges, achievements and progress in a environment of mathematical software research, development and use.

Eisenstein Series and Automorphic $L$-Functions

Eisenstein Series and Automorphic $L$-Functions
Title Eisenstein Series and Automorphic $L$-Functions PDF eBook
Author Freydoon Shahidi
Publisher American Mathematical Soc.
Pages 218
Release 2010
Genre Mathematics
ISBN 0821849891

Download Eisenstein Series and Automorphic $L$-Functions Book in PDF, Epub and Kindle

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.

Mathematical Software -- ICMS 2014

Mathematical Software -- ICMS 2014
Title Mathematical Software -- ICMS 2014 PDF eBook
Author Hoon Hong
Publisher Springer
Pages 762
Release 2014-08-01
Genre Computers
ISBN 3662441993

Download Mathematical Software -- ICMS 2014 Book in PDF, Epub and Kindle

This book constitutes the proceedings of the 4th International Conference on Mathematical Software, ICMS 2014, held in Seoul, South Korea, in August 2014. The 108 papers included in this volume were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections named: invited; exploration; group; coding; topology; algebraic; geometry; surfaces; reasoning; special; Groebner; triangular; parametric; interfaces and general.