A Panorama of Harmonic Analysis
Title | A Panorama of Harmonic Analysis PDF eBook |
Author | Steven G. Krantz |
Publisher | American Mathematical Soc. |
Pages | 375 |
Release | 2019-07-03 |
Genre | Mathematics |
ISBN | 1470451123 |
A Panorama of Harmonic Analysis treats the subject of harmonic analysis, from its earliest beginnings to the latest research. Following both an historical and a conceptual genesis, the book discusses Fourier series of one and several variables, the Fourier transform, spherical harmonics, fractional integrals, and singular integrals on Euclidean space. The climax of the book is a consideration of the earlier ideas from the point of view of spaces of homogeneous type. The book culminates with a discussion of wavelets-one of the newest ideas in the subject. A Panorama of Harmonic Analysis is intended for graduate students, advanced undergraduates, mathematicians, and anyone wanting to get a quick overview of the subject of cummutative harmonic analysis. Applications are to mathematical physics, engineering and other parts of hard science. Required background is calculus, set theory, integration theory, and the theory of sequences and series.
A Panorama of Harmonic Analysis
Title | A Panorama of Harmonic Analysis PDF eBook |
Author | Steven Krantz |
Publisher | Mathematical Association of America |
Pages | 0 |
Release | 1999-09-02 |
Genre | Mathematics |
ISBN | 9780883850312 |
Tracing a path from the earliest beginnings of Fourier series through to the latest research A Panorama of Harmonic Analysis discusses Fourier series of one and several variables, the Fourier transform, spherical harmonics, fractional integrals, and singular integrals on Euclidean space. The climax is a consideration of ideas from the point of view of spaces of homogeneous type, which culminates in a discussion of wavelets. This book is intended for graduate students and advanced undergraduates, and mathematicians of whatever background who want a clear and concise overview of the subject of commutative harmonic analysis.
Harmonic Analysis
Title | Harmonic Analysis PDF eBook |
Author | María Cristina Pereyra |
Publisher | American Mathematical Soc. |
Pages | 437 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821875663 |
Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).
A Panorama of Pure Mathematics, As Seen by N. Bourbaki
Title | A Panorama of Pure Mathematics, As Seen by N. Bourbaki PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 301 |
Release | 1982-08-18 |
Genre | Mathematics |
ISBN | 0080874134 |
A Panorama of Pure Mathematics, As Seen by N. Bourbaki
A Panorama of Hungarian Mathematics in the Twentieth Century, I
Title | A Panorama of Hungarian Mathematics in the Twentieth Century, I PDF eBook |
Author | Janos Horvath |
Publisher | Springer Science & Business Media |
Pages | 639 |
Release | 2010-06-28 |
Genre | Mathematics |
ISBN | 3540307214 |
A glorious period of Hungarian mathematics started in 1900 when Lipót Fejér discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume.
Function Theory of One Complex Variable
Title | Function Theory of One Complex Variable PDF eBook |
Author | Robert Everist Greene |
Publisher | American Mathematical Soc. |
Pages | 536 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9780821839621 |
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
A First Course in Harmonic Analysis
Title | A First Course in Harmonic Analysis PDF eBook |
Author | Anton Deitmar |
Publisher | Springer Science & Business Media |
Pages | 154 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 147573834X |
This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.