CMOS Circuits for Electromagnetic Vibration Transducers

CMOS Circuits for Electromagnetic Vibration Transducers
Title CMOS Circuits for Electromagnetic Vibration Transducers PDF eBook
Author Dominic Maurath
Publisher Springer
Pages 309
Release 2014-09-16
Genre Technology & Engineering
ISBN 9401792720

Download CMOS Circuits for Electromagnetic Vibration Transducers Book in PDF, Epub and Kindle

Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100μW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over 4.1V. - Two special chapters on analog circuit design – it studies benefits and obstacles on implemented chip prototypes with three goals: ultra- low power, wide supply voltage range, and integration with standard technologies. Alternative design approaches are pursued using bulk-input transistor stages in forward-bias operation for amplifiers, modulators, and references. - Comprehensive Appendix – with additional fundamental analysis, design and scaling guidelines, circuit implementation tables and dimensions, schematics, source code listings, bill of material, etc. The discussed prototypes and given design guidelines are tested with real vibration transducer devices. The intended readership is graduate students in advanced courses, academics and lecturers, R&D engineers.

Energy Harvesting and Energy Efficiency

Energy Harvesting and Energy Efficiency
Title Energy Harvesting and Energy Efficiency PDF eBook
Author Nicu Bizon
Publisher Springer
Pages 673
Release 2017-03-09
Genre Technology & Engineering
ISBN 3319498754

Download Energy Harvesting and Energy Efficiency Book in PDF, Epub and Kindle

This book presents basic and advanced concepts for energy harvesting and energy efficiency, as well as related technologies, methods, and their applications. The book provides up-to-date knowledge and discusses the state-of-the-art equipment and methods used for energy harvesting and energy efficiency, combining theory and practical applications. Containing over 200 illustrations and problems and solutions, the book begins with overview chapters on the status quo in this field. Subsequent chapters introduce readers to advanced concepts and methods. In turn, the final part of the book is dedicated to technical strategies, efficient methods and applications in the field of energy efficiency, which also makes it of interest to technicians in industry. The book tackles problems commonly encountered using basic methods of energy harvesting and energy efficiency, and proposes advanced methods to resolve these issues. All the methods proposed have been validated through simulation and experimental results. These “hot topics” will continue to be of interest to scientists and engineers in future decades and will provide challenges to researchers around the globe as issues of climate change and changing energy policies become more pressing. Here, readers will find all the basic and advanced concepts they need. As such, it offers a valuable, comprehensive guide for all students and practicing engineers who wishing to learn about and work in these fields.

Handbook of Energy Harvesting Power Supplies and Applications

Handbook of Energy Harvesting Power Supplies and Applications
Title Handbook of Energy Harvesting Power Supplies and Applications PDF eBook
Author Peter Spies
Publisher CRC Press
Pages 588
Release 2015-06-01
Genre Science
ISBN 9814303062

Download Handbook of Energy Harvesting Power Supplies and Applications Book in PDF, Epub and Kindle

This book describes the fundamentals and principles of energy harvesting and provides the necessary theory and background to develop energy harvesting power supplies. It explains the overall system design and gives quantitative assumptions on environmental energy. It explains different system blocks for an energy harvesting power supply and the trade-offs. The text covers in detail different energy transducer technologies such as piezoelectric, electrodynamic, and thermoelectric generators and solar cells from the material to the component level and explains the appropriate power management circuits required in these systems. Furthermore, it describes and compares storage elements such as secondary batteries and supercapacitors to select the most appropriate one for the application. Besides power supplies that use ambient energy, the book presents systems that use electromagnetic fields in the radio frequency range. Finally, it discusses different application fields and presents examples of self-powered electronic systems to illustrate the content of the preceding chapters.

Micro Energy Harvesting

Micro Energy Harvesting
Title Micro Energy Harvesting PDF eBook
Author Danick Briand
Publisher John Wiley & Sons
Pages 492
Release 2015-06-22
Genre Technology & Engineering
ISBN 3527319026

Download Micro Energy Harvesting Book in PDF, Epub and Kindle

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting
Title Piezoelectric Energy Harvesting PDF eBook
Author Alper Erturk
Publisher John Wiley & Sons
Pages 377
Release 2011-04-04
Genre Technology & Engineering
ISBN 1119991358

Download Piezoelectric Energy Harvesting Book in PDF, Epub and Kindle

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Reconfigurable Switched-Capacitor Power Converters

Reconfigurable Switched-Capacitor Power Converters
Title Reconfigurable Switched-Capacitor Power Converters PDF eBook
Author Dongsheng Ma
Publisher Springer Science & Business Media
Pages 182
Release 2012-07-25
Genre Technology & Engineering
ISBN 1461441870

Download Reconfigurable Switched-Capacitor Power Converters Book in PDF, Epub and Kindle

This book provides readers specializing in ultra-low power supply design for self-powered applications an invaluable reference on reconfigurable switched capacitor power converters. Readers will benefit from a comprehensive introduction to the design of robust power supplies for energy harvesting and self-power applications, focusing on the use of reconfigurable switched capacitor based DC-DC converters, which is ideal for such applications. Coverage includes all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs.

Energy Harvesting

Energy Harvesting
Title Energy Harvesting PDF eBook
Author Alireza Khaligh
Publisher CRC Press
Pages 529
Release 2017-12-19
Genre Science
ISBN 1351834029

Download Energy Harvesting Book in PDF, Epub and Kindle

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.