A Guide to Elementary Number Theory

A Guide to Elementary Number Theory
Title A Guide to Elementary Number Theory PDF eBook
Author Underwood Dudley
Publisher MAA
Pages 156
Release 2009
Genre Mathematics
ISBN 9780883853474

Download A Guide to Elementary Number Theory Book in PDF, Epub and Kindle

An introductory guide to elementary number theory for advanced undergraduates and graduates.

Elementary Number Theory

Elementary Number Theory
Title Elementary Number Theory PDF eBook
Author Underwood Dudley
Publisher Courier Corporation
Pages 274
Release 2012-06-04
Genre Mathematics
ISBN 0486134873

Download Elementary Number Theory Book in PDF, Epub and Kindle

Written in a lively, engaging style by the author of popular mathematics books, this volume features nearly 1,000 imaginative exercises and problems. Some solutions included. 1978 edition.

Elementary Introduction to Number Theory

Elementary Introduction to Number Theory
Title Elementary Introduction to Number Theory PDF eBook
Author Calvin T. Long
Publisher D.C. Heath
Pages 264
Release 1972
Genre Mathematics
ISBN

Download Elementary Introduction to Number Theory Book in PDF, Epub and Kindle

Elementary Number Theory

Elementary Number Theory
Title Elementary Number Theory PDF eBook
Author Gareth A. Jones
Publisher Springer Science & Business Media
Pages 305
Release 2012-12-06
Genre Mathematics
ISBN 144710613X

Download Elementary Number Theory Book in PDF, Epub and Kindle

An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory
Title An Adventurer's Guide to Number Theory PDF eBook
Author Richard Friedberg
Publisher Courier Corporation
Pages 241
Release 2012-07-06
Genre Mathematics
ISBN 0486152693

Download An Adventurer's Guide to Number Theory Book in PDF, Epub and Kindle

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Number Theory and Its History

Number Theory and Its History
Title Number Theory and Its History PDF eBook
Author Oystein Ore
Publisher Courier Corporation
Pages 404
Release 2012-07-06
Genre Mathematics
ISBN 0486136434

Download Number Theory and Its History Book in PDF, Epub and Kindle

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets
Title Elementary Number Theory: Primes, Congruences, and Secrets PDF eBook
Author William Stein
Publisher Springer Science & Business Media
Pages 173
Release 2008-10-28
Genre Mathematics
ISBN 0387855254

Download Elementary Number Theory: Primes, Congruences, and Secrets Book in PDF, Epub and Kindle

This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.