A First Course in Complex Analysis

A First Course in Complex Analysis
Title A First Course in Complex Analysis PDF eBook
Author Matthias Beck
Publisher Orthogonal Publishing L3c
Pages 214
Release 2018-09
Genre Mathematics
ISBN 9781944325084

Download A First Course in Complex Analysis Book in PDF, Epub and Kindle

A First Course in Complex Analysis was developed from lecture notes for a one-semester undergraduate course taught by the authors. For many students, complex analysis is the first rigorous analysis (if not mathematics) class they take, and these notes reflect this. The authors try to rely on as few concepts from real analysis as possible. In particular, series and sequences are treated from scratch.

A First Course in Complex Analysis with Applications

A First Course in Complex Analysis with Applications
Title A First Course in Complex Analysis with Applications PDF eBook
Author Dennis Zill
Publisher Jones & Bartlett Learning
Pages 471
Release 2009
Genre Mathematics
ISBN 0763757721

Download A First Course in Complex Analysis with Applications Book in PDF, Epub and Kindle

The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manor. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.

Complex Analysis

Complex Analysis
Title Complex Analysis PDF eBook
Author Jerry R. Muir, Jr.
Publisher John Wiley & Sons
Pages 274
Release 2015-05-26
Genre Mathematics
ISBN 1118705270

Download Complex Analysis Book in PDF, Epub and Kindle

A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem. Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features: Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects Numerous figures to illustrate geometric concepts and constructions used in proofs Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes Appendices on the basics of sets and functions and a handful of useful results from advanced calculus Appropriate for students majoring in pure or applied mathematics as well as physics or engineering, Complex Analysis: A Modern First Course in Function Theory is an ideal textbook for a one-semester course in complex analysis for those with a strong foundation in multivariable calculus. The logically complete book also serves as a key reference for mathematicians, physicists, and engineers and is an excellent source for anyone interested in independently learning or reviewing the beautiful subject of complex analysis.

Complex Analysis

Complex Analysis
Title Complex Analysis PDF eBook
Author Dennis G. Zill
Publisher Jones & Bartlett Publishers
Pages 453
Release 2013-09-20
Genre Mathematics
ISBN 1449694624

Download Complex Analysis Book in PDF, Epub and Kindle

Designed for the undergraduate student with a calculus background but no prior experience with complex analysis, this text discusses the theory of the most relevant mathematical topics in a student-friendly manner. With a clear and straightforward writing style, concepts are introduced through numerous examples, illustrations, and applications. Each section of the text contains an extensive exercise set containing a range of computational, conceptual, and geometric problems. In the text and exercises, students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section devoted exclusively to the applications of complex analysis to science and engineering, providing students with the opportunity to develop a practical and clear understanding of complex analysis. The Mathematica syntax from the second edition has been updated to coincide with version 8 of the software. --

A Course in Complex Analysis

A Course in Complex Analysis
Title A Course in Complex Analysis PDF eBook
Author Saeed Zakeri
Publisher Princeton University Press
Pages 442
Release 2021-11-02
Genre Mathematics
ISBN 0691207585

Download A Course in Complex Analysis Book in PDF, Epub and Kindle

"This textbook is intended for a year-long graduate course on complex analysis, a branch of mathematical analysis that has broad applications, particularly in physics, engineering, and applied mathematics. Based on nearly twenty years of classroom lectures, the book is accessible enough for independent study, while the rigorous approach will appeal to more experienced readers and scholars, propelling further research in this field. While other graduate-level complex analysis textbooks do exist, Zakeri takes a distinctive approach by highlighting the geometric properties and topological underpinnings of this area. Zakeri includes more than three hundred and fifty problems, with problem sets at the end of each chapter, along with additional solved examples. Background knowledge of undergraduate analysis and topology is needed, but the thoughtful examples are accessible to beginning graduate students and advanced undergraduates. At the same time, the book has sufficient depth for advanced readers to enhance their own research. The textbook is well-written, clearly illustrated, and peppered with historical information, making it approachable without sacrificing rigor. It is poised to be a valuable textbook for graduate students, filling a needed gap by way of its level and unique approach"--

A First Course on Complex Functions

A First Course on Complex Functions
Title A First Course on Complex Functions PDF eBook
Author G. Jameson
Publisher Springer Science & Business Media
Pages 159
Release 2013-03-09
Genre Science
ISBN 9400956800

Download A First Course on Complex Functions Book in PDF, Epub and Kindle

This book contains a rigorous coverage of those topics (and only those topics) that, in the author's judgement, are suitable for inclusion in a first course on Complex Functions. Roughly speaking, these can be summarized as being the things that can be done with Cauchy's integral formula and the residue theorem. On the theoretical side, this includes the basic core of the theory of differentiable complex functions, a theory which is unsurpassed in Mathematics for its cohesion, elegance and wealth of surprises. On the practical side, it includes the computational applications of the residue theorem. Some prominence is given to the latter, because for the more sceptical student they provide the justification for inventing the complex numbers. Analytic continuation and Riemann surfaces form an essentially different chapter of Complex Analysis. A proper treatment is far too sophisticated for a first course, and they are therefore excluded. The aim has been to produce the simplest possible rigorous treatment of the topics discussed. For the programme outlined above, it is quite sufficient to prove Cauchy'S integral theorem for paths in star-shaped open sets, so this is done. No form of the Jordan curve theorem is used anywhere in the book.

Twenty-One Lectures on Complex Analysis

Twenty-One Lectures on Complex Analysis
Title Twenty-One Lectures on Complex Analysis PDF eBook
Author Alexander Isaev
Publisher Springer
Pages 193
Release 2017-11-29
Genre Mathematics
ISBN 3319681702

Download Twenty-One Lectures on Complex Analysis Book in PDF, Epub and Kindle

At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.