APAC 2019
Title | APAC 2019 PDF eBook |
Author | Nguyen Trung Viet |
Publisher | Springer Nature |
Pages | 1419 |
Release | 2019-09-25 |
Genre | Science |
ISBN | 9811502919 |
This book presents selected articles from the International Conference on Asian and Pacific Coasts (APAC 2019), an event intended to promote academic and technical exchange on coastal related studies, including coastal engineering and coastal environmental problems, among Asian and Pacific countries/regions. APAC is jointly supported by the Chinese Ocean Engineering Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE). APAC is jointly supported by the Chinese Ocean Engineering Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE).
Modeling Shallow Water Flows Using the Discontinuous Galerkin Method
Title | Modeling Shallow Water Flows Using the Discontinuous Galerkin Method PDF eBook |
Author | Abdul A. Khan |
Publisher | CRC Press |
Pages | 208 |
Release | 2014-03-03 |
Genre | Science |
ISBN | 1482226022 |
This book introduces the discontinuous Galerkin (DG) method and its application to shallow water flows. The emphasis is to show details and modifications required to apply the scheme to real-world flow problems. It allows the readers to understand and develop robust and efficient computer simulation models that can be used to model flow, contaminant transport, and other factors in rivers and coastal environments. The book includes a large set of tests to illustrate the use of the model for a wide range of applications.
Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems
Title | Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems PDF eBook |
Author | Bernardo Cockburn |
Publisher | |
Pages | 84 |
Release | 2000 |
Genre | |
ISBN |
High-Order Methods for Computational Physics
Title | High-Order Methods for Computational Physics PDF eBook |
Author | Timothy J. Barth |
Publisher | Springer Science & Business Media |
Pages | 594 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 366203882X |
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.
Discontinuous Galerkin Methods
Title | Discontinuous Galerkin Methods PDF eBook |
Author | Bernardo Cockburn |
Publisher | Springer Science & Business Media |
Pages | 468 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642597211 |
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Hyperbolic Problems: Theory, Numerics And Applications (In 2 Volumes)
Title | Hyperbolic Problems: Theory, Numerics And Applications (In 2 Volumes) PDF eBook |
Author | Tatsien Li |
Publisher | World Scientific |
Pages | 793 |
Release | 2012-09-28 |
Genre | Mathematics |
ISBN | 9814417106 |
This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
Meshfree Methods for Partial Differential Equations VIII
Title | Meshfree Methods for Partial Differential Equations VIII PDF eBook |
Author | Michael Griebel |
Publisher | Springer |
Pages | 245 |
Release | 2017-04-05 |
Genre | Computers |
ISBN | 3319519549 |
There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution’s particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.