A Direct Second Order Computational Method for Solving Optimal Control Problems

A Direct Second Order Computational Method for Solving Optimal Control Problems
Title A Direct Second Order Computational Method for Solving Optimal Control Problems PDF eBook
Author Peter Thomas Rutishauser
Publisher
Pages 112
Release 1968
Genre
ISBN

Download A Direct Second Order Computational Method for Solving Optimal Control Problems Book in PDF, Epub and Kindle

Computational Methods in Optimal Control Problems

Computational Methods in Optimal Control Problems
Title Computational Methods in Optimal Control Problems PDF eBook
Author I.H. Mufti
Publisher Springer Science & Business Media
Pages 54
Release 2012-12-06
Genre Mathematics
ISBN 3642859607

Download Computational Methods in Optimal Control Problems Book in PDF, Epub and Kindle

The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY •••••••• 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method •. •••••••••. . . . ••••••. ••••••••. • 8 3. 2 Boundary Constraints •••••••••••. ••••. • 9 3. 3 Problems with Control Constraints ••. •• 15 4. 0 SUCCESSIVE SWEEP METHOD •••••••••••••••••••• 18 4. 1 Final Time Given Implicitly ••••. •••••• 22 5. 0 SECOND-VARIATION METHOD •••••••••••••••••••• 23 6. 0 SHOOTING METHODS ••••••••••••••••••••••••••• 27 6. 1 Newton-Raphson Method ••••••••••••••••• 27 6.

Structure-Exploiting Numerical Algorithms for Optimal Control

Structure-Exploiting Numerical Algorithms for Optimal Control
Title Structure-Exploiting Numerical Algorithms for Optimal Control PDF eBook
Author Isak Nielsen
Publisher Linköping University Electronic Press
Pages 202
Release 2017-04-20
Genre
ISBN 9176855287

Download Structure-Exploiting Numerical Algorithms for Optimal Control Book in PDF, Epub and Kindle

Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution.

Computational Methods for Optimal Design and Control

Computational Methods for Optimal Design and Control
Title Computational Methods for Optimal Design and Control PDF eBook
Author J. Borggaard
Publisher Springer Science & Business Media
Pages 467
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461217806

Download Computational Methods for Optimal Design and Control Book in PDF, Epub and Kindle

This volume contains the proceedings of the Second International Workshop on Optimal Design and Control, held in Arlington, Virginia, 30 September-3 Octo ber, 1997. The First Workshop was held in Blacksburg, Virginia in 1994. The proceedings of that meeting also appeared in the Birkhauser series on Progress in Systems and Control Theory and may be obtained through Birkhauser. These workshops were sponsored by the Air Force Office of Scientific Re search through the Center for Optimal Design and Control (CODAC) at Vrrginia Tech. The meetings provided a forum for the exchange of new ideas and were designed to bring together diverse viewpoints and to highlight new applications. The primary goal of the workshops was to assess the current status of research and to analyze future directions in optimization based design and control. The present volume contains the technical papers presented at the Second Workshop. More than 65 participants from 6 countries attended the meeting and contributed to its success. It has long been recognized that many modern optimal design problems are best viewed as variational and optimal control problems. Indeed, the famous problem of determining the body of revolution that produces a minimum drag nose shape in hypersonic How was first proposed by Newton in 1686. Optimal control approaches to design can provide theoretical and computational insight into these problems. This volume contains a number of papers which deal with computational aspects of optimal control.

Numerical Methods for Optimal Control Problems

Numerical Methods for Optimal Control Problems
Title Numerical Methods for Optimal Control Problems PDF eBook
Author Maurizio Falcone
Publisher Springer
Pages 275
Release 2019-01-26
Genre Science
ISBN 3030019594

Download Numerical Methods for Optimal Control Problems Book in PDF, Epub and Kindle

This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.

Numerical Methods for Optimal Control Problems with State Constraints

Numerical Methods for Optimal Control Problems with State Constraints
Title Numerical Methods for Optimal Control Problems with State Constraints PDF eBook
Author Radoslaw Pytlak
Publisher Springer Science & Business Media
Pages 244
Release 1999-08-19
Genre Science
ISBN 9783540662143

Download Numerical Methods for Optimal Control Problems with State Constraints Book in PDF, Epub and Kindle

While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.

An Introduction to Optimal Control Problems in Life Sciences and Economics

An Introduction to Optimal Control Problems in Life Sciences and Economics
Title An Introduction to Optimal Control Problems in Life Sciences and Economics PDF eBook
Author Sebastian Aniţa
Publisher Springer Science & Business Media
Pages 241
Release 2011-05-05
Genre Mathematics
ISBN 0817680985

Download An Introduction to Optimal Control Problems in Life Sciences and Economics Book in PDF, Epub and Kindle

Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.