A Concise Introduction to the Theory of Integration

A Concise Introduction to the Theory of Integration
Title A Concise Introduction to the Theory of Integration PDF eBook
Author Daniel W Stroock
Publisher World Scientific Publishing Company
Pages 160
Release 1990-03-01
Genre Science
ISBN 9813104333

Download A Concise Introduction to the Theory of Integration Book in PDF, Epub and Kindle

Readership: Mathematicians, physicists and engineers.

A Concise Introduction to the Theory of Integration

A Concise Introduction to the Theory of Integration
Title A Concise Introduction to the Theory of Integration PDF eBook
Author Daniel W. Stroock
Publisher Springer Science & Business Media
Pages 276
Release 1998-12-23
Genre Mathematics
ISBN 9780817640736

Download A Concise Introduction to the Theory of Integration Book in PDF, Epub and Kindle

Designed for the analyst, physicist, engineer, or economist, provides such readers with most of the measure theory they will ever need. Emphasis is on the concrete aspects of the subject. Subjects include classical theory, Lebesgue's measure, Lebesgue integration, products of measures, changes of variable, some basic inequalities, and abstract theory. Annotation copyright by Book News, Inc., Portland, OR

A Concise Introduction to the Theory of Integration

A Concise Introduction to the Theory of Integration
Title A Concise Introduction to the Theory of Integration PDF eBook
Author Daniel W. Stroock
Publisher Springer Science & Business Media
Pages 193
Release 2013-03-14
Genre Mathematics
ISBN 1475723008

Download A Concise Introduction to the Theory of Integration Book in PDF, Epub and Kindle

This little book is the outgrowth of a one semester course which I have taught for each of the past four years at M. 1. T. Although this class used to be one of the standard courses taken by essentially every first year gradu ate student of mathematics, in recent years (at least in those when I was the instructor), the clientele has shifted from first year graduate students of mathematics to more advanced graduate students in other disciplines. In fact, the majority of my students have been from departments of engi neering (especially electrical engineering) and most of the rest have been economists. Whether this state of affairs is a reflection on my teaching, the increased importance of mathematical analysis in other disciplines, the superior undergraduate preparation of students coming to M. 1. T in mathematics, or simply the lack of enthusiasm that these students have for analysis, I have preferred not to examine too closely. On the other hand, the situation did force me to do a certain amount of thinking about what constitutes an appropriate course for a group of non-mathematicians who are courageous (foolish?) enough to sign up for an introduction to in tegration theory offered by the department of mathematics. In particular, I had to figure out what to do about that vast body of material which, in standard mathematics offerings, is "assumed to have been covered in your advanced calculus course".

Measure and Integration

Measure and Integration
Title Measure and Integration PDF eBook
Author Leonard F. Richardson
Publisher John Wiley & Sons
Pages 255
Release 2009-07-01
Genre Mathematics
ISBN 0470501146

Download Measure and Integration Book in PDF, Epub and Kindle

A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, Measure and Integration: A Concise Introduction to Real Analysis is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.

A Concise Introduction to Geometric Numerical Integration

A Concise Introduction to Geometric Numerical Integration
Title A Concise Introduction to Geometric Numerical Integration PDF eBook
Author Sergio Blanes
Publisher CRC Press
Pages 287
Release 2017-11-22
Genre Mathematics
ISBN 1315354861

Download A Concise Introduction to Geometric Numerical Integration Book in PDF, Epub and Kindle

Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.

A Concise Introduction to Analysis

A Concise Introduction to Analysis
Title A Concise Introduction to Analysis PDF eBook
Author Daniel W. Stroock
Publisher Springer
Pages 226
Release 2015-10-31
Genre Mathematics
ISBN 3319244698

Download A Concise Introduction to Analysis Book in PDF, Epub and Kindle

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them.

A Concise Introduction to Measure Theory

A Concise Introduction to Measure Theory
Title A Concise Introduction to Measure Theory PDF eBook
Author Satish Shirali
Publisher Springer
Pages 271
Release 2019-03-15
Genre Mathematics
ISBN 9783030032401

Download A Concise Introduction to Measure Theory Book in PDF, Epub and Kindle

This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book. This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses.